AU-381

M.Sc. (Part—II) Semester—III (CBCS) Examination 3PHY1: PHYSICS

(Electrodynamics-II: Radiation and Plasma Physics)

		(Electrodynamics—II: Radiation and Plasma Physics)					
Time: Three Hours] [Maxim			ximum Marks : 80				
	Note: — All questions are compulsory and carry equal marks.						
1.	(a)	Obtain wave equation for scalar and vector potentials.	8				
	(b)	Derive Abraham-Lorentz formula for the radiation force by using princip of energy.	ple of conservation 8				
	OR						
	(p)	Explain essential conditions for production of Cerenkov radiation. Deriv frequency distribution of the radiated energy.	re an expression for 8				
	(q)	Derive an electromagnetic field of uniformly moving charge.	8				
2.	(a)	Discuss the motion of a charged particle in an uniform crossed electric at	nd magnetic fields.				
	(b)	Discuss in detail second adiabatic invariant.	6				
	(c)	What is magnetic mirroring?	2				
		OR					
	(p)	Explain trapping of plasma in magnetic mirror. What is loss cone?	8				
	(q)	What is curvature drift and gradient B drift?	6				
	(r)	Discuss first and third adiabatic invariants.	2				
3.	(a)	Deduce an equation for fluid drift of plasma perpendicular to magnetic f	field. 8				
	(b)	Explain quasi neutrality of plasma.	5				
	(c)	Explain collective behaviour in plasma.	3				
OR							
	(p)	Discuss behaviour of plasma fluid element parallel to magnetic field.	8				
	(q)	Deduce and explain the equation of continuity.	3				
	(r)	Discuss dielectric properties of plasma.	5				
VOX34883		8.3	(Contd.)				

www.sgbauonline.com

4.	(a)	Derive dispersion relation of electrostatic electron waves perpendicular to magnetic fi	eld. 8
	(b)	Derive dispersion relation for electromagnetic waves propagating through plasma in abs	
		of magnetic field.	8
		OR	
	(p)	Derive dispersion relation for electrostatic ion waves.	8
	(a)	Explain propagation of electromagnetic waves through plasma-parallel to magnetic field	ld.
			8
5.	(a)	Explain Faraday rotation in plasma.	6
	(b)	Draw CMA diagram and indicate and discuss L & R wave cutoff.	4
	(€)	Discuss the simplified model of propagation of radio waves through ionosphere.	6
		OR	
	(p)	Obtain an expression for velocity of magnetosonic waves in terms of Alfven wave velocity	ocity.
			8
	(q)	Show that velocity of Alfven waves linearly depends on magnetic field.	4
	(r)	Draw CMA diagram and indicate the region in which upper and lower hybrid resonance	e are
		located.	4

125