- 5. (A) (i) State and prove necessary and sufficient condition for every similar test to have Neyman structure.
 - (ii) Define:
 - (a) Unbiased test
 - (b) Completeness
 - (c) Bounded completeness.

10+6

OR

- (B) (i) If $X \sim b(n, p)$ construct UMPU test of size α for testing $H_0: p = p_0$ against $H_1: p \neq p_0$.
 - (ii) Define:
 - (a) Similar test
 - (b) Test with Neyman structure
 - (c) Boundary set.

10+6

M.A./M.Sc. (Semester—II) (CBCS Scheme) Examination STATISTICS

Paper-VI

(Testing of Hypothesis)

Time—Three Hours]

[Maximum Marks-80

Note: Answer either (A) or (B) from each question.

- (A) (i) How many possible decisions are there in testing of hypothesis? Define two types of errors and power of the test.
 - (ii) State Neyman-Pearson fundamental lemma and prove its existence part. 8+8

OR

- (B) (i) Describe p-value concept in testing of hypothesis. Compare it with critical value concept.
 - (ii) State importance of N-P lemma in testing of hypothesis.
 - (iii) Construct MP test of size α for testing the hypothesis $H_0: \lambda = \lambda_0$ against $H_1 = \lambda = \lambda_1$

on the basis of a random sample of size n from Poisson distribution with parameter λ .

6+3+7

- 2. (A) (i) Define Monotone likelihood ratio (MLR) property; along with its importance. Also give example of family of distribution belonging and not belonging to it.
 - (ii) Show that UMP test does not exist for testing $H_0: \theta_1 \le \theta \le \theta_2$ against $H_1: \theta < \theta_1$ or $0 > \theta_2$ even in one parameter exponential family.

OR

- (B) (i) Let $X_1, X_2, ..., X_n$ be a random sample from $N(0, \sigma^2)$. Obtain UMP test for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$.
 - (ii) Describe method of obtaining UMP test for one sided hypothesis against one sided alternative, in case of one parameter exponential family.

 8+8
- (A) (i) Define LR test. State only its asymptotic properties.
 - (ii) Write condition for validity of χ^2 test of goodness of fit.

(iii) Construct LR test when a random sample of size n has been drawn from $N(\theta, \sigma^2)$ for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

4+4+8

OR

- (B) (i) Show that for a given α , $0 \le \alpha \le 1$ if a non-randomized NP test and likelihood ratio test for simple hypothesis against simple alternative exist, they are equivalent.
 - (ii) Describe Rao's score test. 8+8
- (A) (i) Describe how sequential test procedure differs from traditional test procedure. Define Average sample number and SPRT.
 - (ii) Define OC function and state its usefulness.
 - (iii) Establish relationship between parameters of sequential test. 5+5+6

OR

- (B) (i) Prove that SPRT terminates with probability one.
 - (ii) Let X be a Poisson variate with parameter λ . Define SPRT for testing H_0 : $\lambda = \lambda_0$ against H_1 : $\lambda = \lambda_1$.

UBS--51131

3

(Contd.)