M.Sc. (Semester—II) (CBCS Scheme) Examination STATISTICS

(Testing and Hypothesis)

Paper—VI

Time: Three Hours]

[Maximum Marks: 80

Note: — Answer either (A) or (B) from each question.

- 1. (A) (i) Define the terms:
 - (a) Null hypothesis
 - (b) Alternate hypothesis
 - (c) Critical region.
 - (ii) Write the statement of NP lemma and prove its sufficiency part.

6 + 10

OR

(B) (i) Let x_1, x_2, x_{25} are iid r.v. with N(θ , 100) for testing hypothesis H₀: $\theta = 75$ against H₁: $\theta = 80$. The following test procedure is used:

$$\phi(x_1, x_2, ... x_{25}) = \begin{cases} 1, & \text{if } \overline{x} \ge 75 \\ 0, & \text{if } \overline{x} < 75 \end{cases}$$

Find size of test and power of test.

(ii) Describe MP test and UMP test.

8+8

- 2. (A) (i) Define monotone likelihood ratio (MLR) property with example.
 - (ii) State and prove Karlin Rubin theorem.

6+10

OR

- (B) (i) Prove that UMP test does not exists for testing the hypothesis $H_0: \theta_1 \le \theta \le \theta_2$ against $H_1: \theta \le \theta_1$ or $\theta \ge \theta_2$, even in case of one parameter exponential family possess MLR property.
 - (ii) For the r.s. of size n from $N(\mu, \sigma^2)$, construct UMP α level test for testing the hypothesis $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$ where σ^2 is known.
- 3. (A) (i) Construct LR test for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, when r.s. has been drawn from normal population $N(\mu, \sigma^2)$, where μ and σ^2 are unknown. Find the critical region.
 - (ii) Describe Bartlett's test.

8+8

OR

- (B) (i) Show that for given α , $0 \le \alpha \le 1$, if a non randomised NP test and LR test for testing simple hypothesis against simple alternate hypothesis exist, then they are equivalent.
 - (ii) Describe Pearson's χ^2 test for goodness of fit.

8+8

WPZ-3453

- 4. (A) (i) Establish the relationship between the parameters of SPRT.
 - (ii) Define SPRT for testing $H_0: \theta \theta_0$ against $H_1: \theta = \theta_1$ ($\theta_1 \ge \theta_0$) where θ is the parameter of Poisson distribution. Also find OC curve.

OR

- (B) (i) Prove that SPRT terminates with probability 1.
 - (ii) Describe sequential probability ratio test.

8+8

- 5. (A) (i) Define:
 - (a) Unbiased test
 - (b) Completeness
 - (c) Bounded completeness.
 - (ii) State and prove necessary and sufficient condition for every similar test to have Neyman structure.

 6+10

OR

- (B) (i) Show that every UMP test is unbiased test.
 - (ii) If $X \sim b$ (n, p), construct UMPU test of size α for testing H_0 : $p = p_0$ against H_1 : $p \neq p_0$.