- (p) Derive Dirac's relativistic wave equation. Obtain the continuity equation corresponding to Dirac's equation.
- (q) Obtain covariant form of Klein-Gordan equation.
- (r) Show that $[\alpha_x \alpha_y \alpha_z \beta, \beta] = 2\alpha_x \alpha_y \alpha_z$.

AQ-889

M.Sc. Semester—II (CBCS Scheme) Examination PHYSICS

Paper-2-PHY-2

(Quantum Mechanics-II)

Time: Three Hours]

[Maximum Marks: 80

EITHER

- 1. (a) Develop the stationary perturbation theory for nondegenerate case up to first order. 8
 - (b) A hydrogen atom in the first excited state is placed in a uniform electric field E along the positive z-axis. Evaluate correction in the energy. Draw an energy level diagram illustrating the different states in the presence of the field.

OR

- (p) Show that shift in energy of perturbed degenerate levels are given by Secular determinant. 8
- (q) Explain splitting of spectral lines in weak magnetic field using stationary perturbation theory. 8

EITHER

2. (a) Show that the first order effect of a time dependent perturbation, varying sinusoidally in time, lead to emission or absorption of energy.

325

(b) Derive the Fermi Golden rule for the transition rate from a given initial state to a final state of continuum.

OR

- (p) On the basis of time dependent perturbation theory, briefly outline the theory of emission and absorption in atomic system.
 8
- (q) Give the time dependent perturbation theory for the case of perturbation which is constant in time except that it is switched on at t = 0 and switched off at time t.

EITHER

- 3. (a) Show that symmetry character does not change with time.
 - (b) Show that antisymmetric wave function for two Fermions would vanish if both occupy the same position with identical spin.

 4
 - (c) Explain the algebra of creation and annihilation operator for Fermions.

OR

- (p) Illustrate exchange degeneracy with example.
- (q) Construct the spin function for three electron system.

UBS-51114 2 (Contd.)

(r) Explain the algebra of creation and annihilation operator for Bosons.

EITHER

- 4. (a) What are partial waves? What is significant number of partial waves?
 - (b) What is partial wave analysis? Write and explain mathematical formalism of partial wave analysis method.
 - (c) Explain the method of calculating scattering amplitude by Born approximation method. 6

OR

- (p) Discuss the validity condition for Born approximation.
- (q) Calculate scattering cross section for a low energy particle from a potential given by $V(r) = -V_{\theta}$ for r < a, $V(r) = \theta$ for r > a using using Born approximation.
- (r) Solve the hard sphere scattering problem using partial wave analysis.

EITHER

 (a) Develop the Klein-Gordan equation for spin zero particle. Construct the corresponding continuity equation and discuss its non relativistic limit.

8

UBS---51114

3

(Contd.)