Marks-80

(C)	In context with optical fiber, define the following terms:		
	(i) Acceptance angle	-	
	(ii) Numerical aperture		
	(iii) Multimode fiber		
	(iv) Single mode fiber		
	(v) Step index fiber		
	(vi) Graded index fiber.	6	
	OR		
(P)	Write four advantages of using laser conventional techniques for material proceapplications.		
(Q)	How laser is used in reading and writing do the DVD/CD ?	ata on 6	
(R)	Why we need precision spectroscopy?	4	
(S)	What is frequency comb?	2	

M.Sc. (Semester-II) (Cl	BCS Scheme) Examination
PHY	YSICS
2 PH	Y-4 (ii)
(Lasers and La	ser Applications)
Time—Three Hours]	[Maximum Marks—8
Note :- All questions	are compulsory and carry

equal marks. (A) What are stipulated and spontaneous emissions?

- (B) Derive the ratio of stimulated to spontaneous emission rates from upper energy level 'u' to lower energy level 'l'.
- (C) Mathematically, show that the population inversion is necessary and saturation intensity is sufficient condition for obtaining lasing action.

OR

- (P) Derive the expression for longitudinal mode number.
- (Q) What are the requirements for the development of longitudinal laser modes?

325

- (R) Write out the mode distributions at the mirrors for the TEM_{on}, the TEM_{on} and the TEM_{on} modes in terms of the transverse variables x, y and $\rho = \sqrt{x^2 + y^2} .$ 8
- (A) Derive the steady state population inversion condition in four level laser. Give example. 8
 - (B) Explain how pulse compression of a chirped pulse is possible using grating pair. Draw appropriate diagram wherever necessary.

OR

- (P) Draw and explain the stability diagram for two mirror laser cavity with radii of curvature R, and R,.
- (Q) Compare the properties of real and ideal Gaussian laser beam. Explain the physical significance of M² parameter (propagation factor).
- (A) Write the working principle of Ammonia MASER. Draw the schematics of its experimental set up.
 - (B) With the help of energy level diagram, explain the working of Nitrogen laser.

OR

(P) What are the different types of laser structures used for the CO, laser? Draw and briefly explain all of them. 10

- (Q) Explain the transfer down process in an Excimer laser with help of appropriate diagram.
- (A) Draw neat and labelled experimental schematics of Laser Induced Fluorescence (LIF) set up. 6
 - (B) Write any four applications of laser induced multi photon processes.
 - (C) Elaborate on the use of Raman spectroscopy in material science. 6

OR

- (P) Write names of at least two major 2nd order optical nonlinear effects.
- (Q) Explain how multiphoton spectroscopy can be used to study the states which are not accessible from the ground state because of selection rule and also high lying electronic states.
- (R) Draw and compare the Jablonski energy diagram of conventional one photon excited fluorescence with two and three photon excited fluorescence.
- (A) Explain with a neat labelled diagram principle of light propagation inside optical fiber. 6
 - (B) What are the advantages of using optical fiber over coaxial cable?