WPZ -3442

(Contd.)

M.Sc. (Part—I) Semester—II (CBCS Scheme) Examination CHEMISTRY (Old) (Upto Winter-2018) (Physical Chemistry—II)

Paper-VII

Time : Three Hours]				[Maximum Marks: 80	
	Note	e :—(1)	All questions are compulsory and carry equal marks.		
		(2)	Use of log table and calculator is permitted.		
1.	(a)		the kinetics of branched chain reactions. Explain the term factions limit.	irst explosion limit and	
	(b)	Discuss	the relaxation methods for the study of kinetics of fast rea	ctions. 4	
	(c)	Discuss	Belousov-Zhabotinsky reaction in detail.	6	
			OR		
	(p)	Explain	the kinetics and mechanism of thermal reaction between F	H_2 and Br_2 .	
	(q)	Describe the sloped flow method for studying kinetics of fast reactions.			
	(r)	Define a	nd explain :		
		(i) Aci	id base catalysis		
			zyme catalysis.	6	
2.	(a)	Explain Huckel theory of conjugated systems, their bond order and calculations of charge density.			
	(b)	What are	e wave functions and how energy levels are calculated from	m wave functions? 4	
	(c)	Apply H	IMO theory to ethylene molecule and find out HMO energ	gies. 6	
			OR		
	(p)	Construct sp ³ hybrid orbitals by combining one 2s and three 2p orbitals and establish the value of angle between the hybrid orbitals.			
	(q)	Apply H	IMO theory to butadiene molecule and calculate HMO end	ergies. 4	
	(r)	Explain	the criteria for forming M.O's and A.O's.	4	
3.	(a)	Explain:			
		(i) Rar	ndom coils		
		(ii) Cor	nfiguration of macromolecules.	6	
	(b)	Define n	number average and mass average molecular mass of polyn	ner. 6	
	(c)	Describe	e the Osmometry method used for determination of molecu	ılar mass. 4	
		OR			
	(p)	Write no	otes on :		
		• •	ctrophoresis		
			ymer liquid crystals.	6	
	(q)	-	the stability, kinetics and mechanism of polymerization.	6	
	(r)	-	in sample consists of an equimolar mixture of ribonuclear	- ,	
		naemogi	lobin (M = 15.5 kg mol ⁻¹). Calculate number average mass		
				4	

1

- http://www.sgbauonline.com/ (a) Discuss Butler-Volmer equation, the low and high overpotential limit. Also explain Tafel Plot. 8 4 What are different types of corrosion? Explain corrosion inhibitors also. 4 Define electrified interfaces and electric potential at the interfaces. OR (p) Discuss Debye Huckel Onsager treatment and ion solvent interactions. 6 (q) Write notes on: (i) Electron transfer processes 6 Electrode solution interface. Explain experimental technique involved in voltammetry. Also explain phenomenon of concentration polarization. (a) For homonuclear diatomic and symmetrical linear polyatomic molecules derive rotational 5. partition function $Zr = \frac{T}{\sigma \theta}$. where θ_i = Characteristic rotation temperature σ = Symmetry number. 4 (b) Define the concept of distribution, thermodynamic probability and most probable distribution. (c) Compare microcanonical, canonical and grand canonical ensemble based on their thermodynamic environment.
 - 6
 - 6

OR

(p) Calculate the value of molecular rotational partition function for $N_3(g)$ at 298 K. The moment of inertia is 1.407 \times 10⁻⁴⁶ kg m 2 and the symmetry number is 2 for $N_{2}(g).$

Give
$$K = 1.381 \times 10^{-23} \text{ J} \text{ k}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{ Js}$$

- (q) Derive an expression for translational partition function for H, molecule at room temperature. 6
- Explain corresponding distribution law using Lagrange's method of undetermined multiplier.