M.A./M.Sc. Part-I (Semester-II) (CBCS Scheme) Examination (Old) MATHEMATICS

(Complex Analysis—II)

Paper-III (203)

Time—Three Hours]

[Maximum Marks—80

Note: - Solve ONE question from each Unit.

UNIT-I

1. (a) For Re z > 1, prove that:

$$\xi(z)|\overline{z}| = \int_{0}^{\infty} (e^{t} - 1)^{-1} t^{z-1} dt.$$

(b) Write the statement of Mittag Leffler's theorem and apply it to prove,

$$\cot z = \frac{1}{z} + \sum_{n=-\infty}^{\infty} \left(\frac{1}{z - n\pi} + \frac{1}{n\pi} \right).$$

(c) Write the Gauss's formula for Gamma z and derive the functional equation. What are the singular points of z , write their nature and find the residue of z at those points.

- (d) Prove that:
 - (i) $\left\{ \left(1 + \frac{z}{n}\right)^n \right\}$ converges to e^z in H(C)
 - (ii) If $t \ge 0$ then $\left(1 \frac{t}{n}\right)^n \le e^{-t}$ for all $n \ge t$. 8

UNIT-II

- (a) State and prove the uniqueness of direct analytic continuation. Also define analytic continuation along a curve.
 - (b) Show that the power series $z \frac{z^2}{2} + \frac{z^3}{3} \frac{z^4}{4} + \dots$ can be analytically continued to a wider region by means of the series,

$$\log 2 - \frac{(1-z)}{2} - \frac{1}{2} \left(\frac{1-z}{2}\right)^2 - \frac{1}{3} \left(\frac{1-z}{z}\right)^3 \dots 8$$

- 4. (c) (i) Define Germ of a function at a point.
 - (ii) Show that if f is analytic in a domain D and let f(z) vanishes over a domain D₀ which is a part of D. Then f(z) vanishes at each point of the whole domain D.

- 10. (c) Let f be analytic function on the region containing the closure of a disk D = {z: |z| < 1} and satisfying f(0) = 0, f'(0) = 1. Then prove that there is a disk S ⊂ D on which f is one-one and such that f(s) contains a disk of radius 1/72.
 - (d) Let f be analytic function on a disk B(a, r) such that |f'(z) f'(a)| < |f'(a)| for all z in B(a, r); $z \ne a$; then prove that f is one-one.

5

www.sgbauonline.com

(d) (i) Show that
$$f(z) = \int_{0}^{\infty} (1+t)e^{-zt} dt$$
 converges if Re $z > 0$ also,

(ii) Show that
$$g(z) = \frac{z+1}{z^2}$$
 is the analytic continuation of the above $f(z)$ into the left half plane Re $z < 0$.

UNIT-III

- (a) Let (f, D) be a function element which admits unrestricted analytic continuation in a simply connected region G. Then prove that there is an analytic function F: G → C such that F(z) = f(z) for all z in D.
 - (b) State and prove the theorem to show that Dirichlet's problem can be solved for the unit disk.
 8
- 6. (c) State and prove 'Schwartz's reflection principle'.
 - (d) (i) Define Poisson's kernel and Green's function.
 (ii) Prove that if a ∈ C, ρ > 0 and suppose h
 - (ii) Prove that if a ∈ C, ρ > 0 and suppose n is a continuous real valued function on {z: |z-a|=ρ} then there is a unique continuous function w: B(a, ρ) → R such that w is harmonic on B(a, ρ) and w(z) = h(z) for |z-a| = ρ.

8

UNIT--IV

7. (a) State and prove Jensen's formula.

X

- (b) Using Hadamard's theorem prove the following:
 - (i) Let f be an entire function of finite order, then f assumes each complex number with one possible exception
 - (ii) Let f be an entire function of finite order λ, where λ is not an integer, then f has infinitely many zeros.
- 8. (c) Let f be an entire function of order λ and let $M(r) = \max\{|f(z)|:|z|=r\}$ then prove that

$$\lambda = \lim_{r \to \infty} \sup \left[\frac{\log \log M(r)}{\log r} \right]$$
. Also find the order

of the entire function $f(z) = e^{z^n}$, for n > 0.

(d) Define Genus of an entire function and prove that if f is an entire function of finite genus μ then f is of finite order λ ≤ μ + 1.

UNIT-V

- 9. (a) Let f be analytic in $D = \{z : |z| < 1\}$. Suppose that f(0) = 0, f'(0) = 1 and $|f(z)| \le M$ for all z in D then
 - prove that $M \ge 1$ and $f(D) \supset B\left(0, \frac{1}{6M}\right)$. 8
 - (b) State and prove 'Little Picard's theorem'. 8