First Semester M. Sc. (Part-I)(C. B. C. S. Pattern) Examination (Old Course)

MATHEMATICS (102)
Advanced Abstract Algebra - I
P. Pages : 7

Time: Three Hours]
[Max. Marks : 80
Note : Solve 'one' question from each unit.

UNIT - I

1. (a) Define :-
(i) Normal series.
(ii) Composition series.

Prove that a group G is solvable if and only if G has normal series with abelian factors. Further a finite group is solvable if and only if it's composition factors are cyclic groups of prime orders.
$1+1+6=8$
(b) Let G be a finite group of order P^{n}, where P is prime and $n>0$, then prove that
(i) G has a non - trivial centre Z .
(ii) $\mathrm{Z} \cap \mathrm{N}$ is nontrivial for any non - trivial normal subgroup N of G .
(iii) Prove that :

If H is a proper subgroup of G then H is property contained in $\mathrm{N}(\mathrm{H})$; hence if H is a subgroup of order $\mathrm{P}^{\mathrm{n}-1}$, then H $\triangle \mathrm{G}$

8
2. (c) Prove that, every nilpotent group is solvable, and if G is nilpotent group, then prove that every subgroup of G and every homomorphic image of G are nilpotent. 8
(d) Define, orbit of x in G .

Let G be a ormpo acting on set X. then the set of all orbits in X under G is partition of X. For any $X \in X$ there is a bijection
$G_{x} \rightarrow G / G_{x}$ and hence $\left|G_{x}\right|=\left[G: G_{x}\right]$ therefore, if X is a finite set,

$$
|X|=\sum_{X \in C}|G: G x|
$$

where C is a subset of X conlaining exactly one element from each orbit: Prove this.

$$
1+7=8
$$

(ii) Let R be a noetherian ring, then the sum of nilpotent ideals in R is a nilpotent ideal. Prove this.
10. (c) State and prove Hilbert - Basis theorem.

$$
1+7=8
$$

(d) Define :-
(i) Noetherian R - module M .
(ii) Left artinian ring.

Also Prove that, if J is a nil left ideal in an artinian ring R, then J is nilpotent.

$$
1+1+6=8
$$

(2) Prove that, every Euclidean domain is a PD.

3
(b) Prove that every PID is a Unique Factorization Domain (UFD) but a UFD is not necessarily a PID.
8. (c) Define primitive polynomial, also state and prove Gauss Lemma. $\quad=1+1+6=8$
(d) Let R be a unique factorization domain (UFD), then prove that the polynomial ring $\mathrm{R}[\mathrm{x}]$ over R is also a UFD.

UNTT-V

9. (a), Define :-
(i) Finitely generated R - module M .
(ii) Free Module:

Let M be a finitely generated free module over a commutative ring R, then prove that all bases of M have the same number of elements.

$$
1+1+6=8
$$

(b) (i) Let M be a simple R - module, then prove that $\operatorname{Hom}_{R}(M, M)$ is a division ring. 5

UNIT - II

3. (a) Prove that :-
(i) If a group of order P^{n} contains exactly one subgroup each of orders $\mathrm{P}, \mathrm{P}^{2} \ldots .$. $\mathrm{P}^{\mathrm{n}-1}$ then it is cyclic.
(ii) There are no simple subgroups of orders 63 and 56. Prove this. $\quad 4+4=8$
(b) Let G be a group of order pq , where p and q are prime numbers such that $\mathrm{p}>\mathrm{q}$ and $\mathrm{qX}(\mathrm{p}-1)$. Then G is cyclic. Prove this.
4. (c) Define invarients of A.

Let A be a finite abelian group of order $\dot{P}_{1}{ }^{\mathbf{1}}, \ldots . . . P_{k}^{e}{ }_{k}, P_{1}$ distinct primes. $e_{i}>0$ then prove that,
$A=S\left(p_{1}\right) \oplus \ldots . . \oplus S\left(P_{\mathbf{K}}\right)$ where,
$\left|S\left(p_{i}\right)\right|=P_{i}$ and this decomposition of A is unique, that is if, A is unique, that is if,
$A=H_{i} \oplus \ldots . \oplus H_{K}$, where $|H i|=P_{i}{ }_{i}$
then $H_{i}=S\left(P_{i}\right)$.
(d) State and prove first sylow theorem.

$$
1+7=8
$$

AQ-799 $\quad 3 \quad$ P.T.O.

UNIT - 1 II

5. (a) Define :-
(i) Maximal ideal.
(ii) Simple ring.

Also, prove that in a non - zero commutative ring with unity, an ideal M is maximal if and only if R / M is a field. $1+1+6=8$
(b) Let $f: R \rightarrow S$ be a homomorphism of a ring R on to a ring S, and let $N=K$ erf. then the mapping $F: A \rightarrow f(A)$ defines a $1-1$ correspondence from the set of all ideals (right ideals, left ideals) in R that contain N onto the set of all ideals (right ideals, left ideals) in S . It preserves ordering in the sense that $A \nsubseteq B$ iff $f(A) \not \subset f(B)$. Prove this.
6. (c) (i) Let f be a homomorphism of ring R into a ring S with Kernel N, then prove that $\mathrm{R} / \mathrm{N} \simeq \operatorname{Imf}$.
(ii) Let R be a commutative ring with unity in which each ideal is prime, then prove that \mathbf{R} is a field.
(d) Define :-
(i) Sum of ideal,
(ii) Direct sum of ideal.

Let $A_{1}, A_{2} \ldots . . A_{n}$ be right (or left) ideals in ring R, then prove that the following are equivalent.
(i) $A=\sum_{i=1}^{n} A_{i}$, is a direct sum.

(iii) $A_{i} \cap \sum_{j=1, j \neq i}^{n} A_{j}=0, i=1,2 \ldots \ldots . n$.

$$
1+1+6=8
$$

UNIT - IV

7. (a) (1) Define :-
(i) Irredụcible element
(ii) Prime element.

Prove that an irreducible element in a commutative principle ideal domain (PID) is always prime. $\quad 1+1+3=5$

