First Semester M. Sc. (Part-I)(C. B. C. S. Pattern)
Examination

(Old Course)

MATHEMATICS (102)

Advanced Abstract Algebra - I

P. Pages: 7

Time: Three Hours]

[Max. Marks : 80

Note: Solve 'one' question from each unit.

UNIT-I

- 1. (a) Define :—
 - (i) Normal series.
 - (ii) Composition series.

Prove that a group G is solvable if and only if G has normal series with abelian factors. Further a finite group is solvable if and only if it's composition factors are cyclic groups of prime orders. 1 + 1 + 6 = 8

- (b) Let G be a finite group of order P^n , where P is prime and n > 0, then prove that
 - (i) G has a non trivial centre Z.

AQ-799

P.T.O.

- (ii) Z \(\text{N} \) is nontrivial for any non trivial normal subgroup N of G.
- (iii) Prove that:

 If H is a proper subgroup of G, then H is properly contained in N (H); hence if H is a subgroup of order P^{n-1} , then H \triangle G.
- 2. (c) Prove that, every nilpotent group is solvable, and if G is nilpotent group, then prove that every subgroup of G and every homomorphic image of G are nilpotent.
 - (d) Define, orbit of x in G.
 Let G be a group acting on set X, then the set of all orbits in X under G is partition of X. For any x ∈ X there is a bijection G_x → G / G_x and hence |G_x| = [G:G_x] therefore, if X is a finite set,
 |X| = ∑ [G:G_x]

where C is a subset of X containing exactly one element from each orbit. Prove this.

and seed to the seed that a seed the seed to

A Commence of the state of the state of the state of

- (ii) Let R be a noetherian ring, then the sum of nilpotent ideals in R is a nilpotent ideal. Prove this.
- 10. (c) State and prove Hilbert Basis theorem. 1 + 7 = 8
 - (d) Define:-
 - (i) Noetherian R module M.
 - (ii) Left artinian ring.

Also Prove that, if J is a nil left ideal in an artinian ring R, then J is nilpotent.

$$1+1+6=8$$

- (2) Prove that, every Euclidean domain is a PID. 3
- (b) Prove that every PID is a Unique Factorization
 Domain (UFD) but a UFD is not necessarily
 a PID.

 8
- 8. (c) Define primitive polynomial, also state and prove Gauss Lemma. 1 + 1 + 6 = 8
 - (d) Let R be a unique factorization domain (UFD), then prove that the polynomial ring R [x] over R is also a UFD.

UNIT-V

- 9. (a) Define :-
 - (i) Finitely generated R module M.
 - (ii) Free Module.

Let M be a finitely generated free module over a commutative ring R, then prove that all bases of M have the same number of elements. 1+1+6=8

(b) (i) Let M be a simple R – module, then prove that $\operatorname{Hom}_{\mathbb{R}}(M, M)$ is a division ring.

UNIT - II

- 3. (a) Prove that :--
 - (i) If a group of order P^n contains exactly one subgroup each of orders P, P^2 P^{n-1} then it is cyclic.
 - (ii) There are no simple subgroups of orders 63 and 56. Prove this. 4 + 4 = 8
 - (b) Let G be a group of order pq, where p and q are prime numbers such that p > q and qX (p-1). Then G is cyclic. Prove this.
- 4. (c) Define invarients of A.
 Let A be a finite abelian group of order
 P₁ , P_k , P_i distinct primes e_i > 0 then prove that,
 A = S (p₁) ⊕ ⊕ S (P_K). where,
 | S (p_i) | = P_i and this decomposition of A is unique, that is if,

The second of th

- A is unique, that is if, $A = H_i \oplus \oplus H_K, \text{ where } | H_i | = P_i$ then $H_i = S(P_i)$.
 - (d) State and prove first sylow theorem.

1 + 7 = 8

AQ-799

3

P.T.O.

UNIT-III

- 5. (a) Define :—
 - (i) Maximal ideal.
 - (ii) Simple ring.

Also, prove that in a non – zero commutative ring with unity, an ideal M is maximal if and only if R/M is a field. 1 + 1 + 6 = 8

- (b) Let f: R → S be a homomorphism of a ring R on to a ring S, and let N = K erf. then the mapping F: A → f (A) defines a 1 1 correspondence from the set of all ideals (right ideals, left ideals) in R that contain N onto the set of all ideals (right ideals, left ideals) in S. It preserves ordering in the sense that A ⊊ B iff f (A) ⊊ f (B). Prove this.
- 6. (c) (i) Let f be a homomorphism of ring R into a ring S with Kernel N, then prove that R/N = Imf.
 - (ii) Let R be a commutative ring with unity in which each ideal is prime, then prove that R is a field.

- (d) Define:-
 - (i) Sum of ideal,
 - (ii) Direct sum of ideal.

Let A_1 , A_2 A_n be right (or left) ideals in ring R, then prove that the following are equivalent.

(i)
$$A = \sum_{i=1}^{n} A_i$$
, is a direct sum.

(ii) If
$$0 = \sum_{i=1}^{n} a_i$$
, $a_i \in A_i$, then $a_i = 0$
 $i = 1$ $i = 1, 2, ..., n$.

(iii)
$$A_i \cap \sum_{j=1, j \neq i}^{n} A_j = 0, i = 1, 2 \dots n.$$

$$1+1+6=8$$

UNIT-IV

- 7. (a) (1) Define :-
 - (i) Irreducible element
 - (ii) Prime element.

Prove that an irreducible element in a commutative principle ideal domain (PID) is always prime. 1+1+3=5

P.T.O.