AU-236

M.Sc. Semester-I (C.B.C.S. Scheme) Examination CHEMISTRY (Old) (Upto Summer-2018) (Physical Chemistry—I)

Paper—III				
Time : Three Hours] [Maximum Ma		: 80		
Note:—(1) All questions are compulsory and carry equal marks.				
	(2) Use of log table and calculator is permitted.			
1. (a	Derive an expression for energy of a rigid rotator using Schrodinger wave equation.	8		
(b) Calculate the degeneracies of the particle of mass 'm' in a three dimensional box of w	<i>ii</i> dth		
	'a' having energies equal to [06] and [09] in units of $\left[\frac{h^2}{8Ma^2}\right]$.	4		
(c)		4		
OR				
(p) Discuss in detail application of variation theorem to the Helium atom.	8		
(q	Explain generalised angular momentum of a particle. Derive the eigen values of ang	ular		
	momentum operator \hat{j}^2 and \hat{J}_Z using commutation.	8		
2. (a)	Derive BET equation and give its significance.	8		
(b	What is micellization? Discuss the counter ion binding to micelles.	8		
	OR			
(p)	Deduce an expression for Langmuir's adsorption isotherm and discuss its importance.			
		8		
(q.		8		
3. (a)	State and explain chemical potential. Give its significance.	6		
(b	Explain partial molar heat content and write its significance.	6		
(c)	Explain entropy production and entropy flow for heat flow irreversible process.	4		
OR				
VOX —3	1 (Co	ontd.)		

www.sgbauonline.com

	(b)	Describe entropy production in coupled chemical reactions.	C
	(q)	Explain experimental method for determination of fugacity.	6
	(r)	At concentration of 0.25 molal, the volume of NaCl solution per 1000 gm of water is given by	at 25°C
		$V = 1002.9 - 16.40 \text{ m} + 2.5 \text{ m}^3 - 1.2 \text{ m}^3 \text{ m}^4.$	
		Calculate partial molar volume of Sedium Chloride for 1 molal solution.	4
4.	(a)	Explain orbital angular momentum and total angular momentum of the nucleus.	6
	(b)	Explain structure of nucleus in terms of optical model.	ó
	(c)	Discuss codective model in detail.	4
		OR	
	(p)	Write an account of nuclear fermi gas model and shell model.	10
	(q)	Discuss magnetic properties of the nucleus.	6
5.	(a)	What are the salient features of Collision theory? Discuss its limitations.	8
	(b)	Explain in detail Lindemann's theory of unimolecular reactions.	8
		OR	
	(p)	Discuss in brief transition state theory.	8
	(q)	Give an account of Marcus extension of RRK treatment.	8