M.Sc. (Part-I) Semester-I (C.B.C.S. Scheme) Examination CHEMISTRY (Old)

(Upto Summer-2018)
(Inorganic Chemistry-I)

Paper-1

Time : Three Hours]
[Maximum Marks : 80
N.B. :- (1) All questions are compulsory and carry equal marks.
(2) Use of scientific calculator is allowed.

1. (A) Giving appropriate stereochemical rules of VSEPR theory, explain the shape of the following :
(i) SF_{4}
(ii) ICl_{4}^{-}and PCl_{5}.
(B) What is Bent's Rule ? Using it explain the following :
(i) Bond angle decreases in the order:

$$
\mathrm{H}-\mathrm{C} \quad \mathrm{H}>\mathrm{H}-\mathrm{C}-\mathrm{Cl}>\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}
$$

(ii) In trigonal bipyramid molecule, more electronegative atom attached axial rather than equatorial positions.
(C) Discus molecular energy level diagram of CO molecule and explain its σ donor and π acceptor tendency.

OR

(P) Discuss MO diagram of Benzene molecule in brief.6
(Q) In $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules bond angle is decreasing. Explain giving reasons on the basis of VSEPR theory.
(R) Mention the type of hybridisation and shapes of following:
(i) SiF_{4}
(ii) $\mathrm{H}_{2} \mathrm{~S}$
(iii) BF_{3}
(iv) $\mathrm{IF}_{\text {, }}$
(v) NO_{2}^{+}
2. (A) Explain abnormal magnetic properties in octahedral complexes giving suitable examples.
(B) Explain high spin-low spin cross-over by using suitable examples. 5
(C) Discuss the distortion of the octahed on of a Cu^{++}complex in terms of Jahn-Teller effect.

OR
(P) Indicate the splitting of d-levels and the number of electrons in d-level in the following complexes :
(i) High spin $\left[\left.\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right|^{2+}\right.$
(ii) Low $\operatorname{spin}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(iii) Tetrahedral $\left[\mathrm{CuCl}_{4}\right]^{\text {. }}$ 6
(Q) Give limitations of erystal field theory. 5
(R) What are the conditions required for orbital contribution in magnetic moment? In which of the following configuration do you expect orbital contribution :

$$
\begin{equation*}
\left(t_{2 \xi}\right)^{2}(e g)^{0} \quad\left(t_{2 k}\right)^{3}(e g)^{n} ? \tag{5}
\end{equation*}
$$

3. (A) Draw topological sketches for following molecules, in terms of styx number
(i) $\mathrm{B}_{2} \mathrm{H}_{6}$
(ii) $\mathrm{B}_{5} \mathrm{H}_{\text {, }}$
(iii) $\mathrm{B}_{4} \mathrm{H}_{10}$
(iv) $\mathrm{B}_{3} \mathrm{H}_{9}$.
(B) Discuss structure and bonding in pentaborane -11 .
(C) What are metal chusters ? Explain structure of binuclear and trinucler metal clusters. 5 OR
(P) Describe synthesis and properties of sulphur-nitrogen compounds. 6
(Q) Discuss structure and bonding in diborane. 5
(R) What are isopoly and heteropoly acids? Explain it w.r.t. Mo and W. 5
4. (A) Describe the Trwin-Rossotti plf metric method of determination of stability constant of complex.
(B) What is chelate cffect? Explain its thermodynamic origin. 5
(C) Explain any two inorganic reactions in arhydrous sulphuric acid medium. 5

OR

(P) Derive the relationship between stepwise stability constant $\left(K_{n}\right)$ and overall stability
constant $\left(\beta_{n}\right)$.
(Q) Give an account on Molten salts as nonaqueous solvent. 5
(R) Discuss acid-base and Solvolysis reaction in non-aqueous BrF_{3}, solvent.
5. (A) Identify the symmetry point group in the following :
(i) PCl_{5}
(ii) $\mathrm{H}_{2} \mathrm{O}$
(iii) CO_{2}
(iv) BeF_{2}
(v) trans $\mathrm{H}_{2} \mathrm{O}_{2}$ and
(vi) NH_{3}.
(B) Explain the reducible and irreducible representations. 5
(C) Explain the terms symmetry elements and symmetry operations with suitable example. 5 OR
(P) Show that $\mathrm{S}_{2}=\mathrm{C}_{2}^{z} \times \sigma^{x y}$ by vector method. 6
(Q) Discuss all the symmetry operations in CH_{4} molccule. 5
(R) Derive the character table for $\mathrm{C}_{2 \mathrm{v}}$ point group. 5

