M.E. Second Semester (Electrical & Elect.) (New - CGS)

13291 : Elective-I : Power Electronics controlled Drives : 2 EEEME 4

P. Pages: 2

Mininia

AU - 3404

6

7

http://www.sgbauonline.com

7

7

7

Max. Marks: 80

Notes:

Time: Three Hours

- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- a) Explain with necessary diagram the converter configuration for a four quadrant DC motor Drive.
 - b) A 200 V, 10.5 A, 200 RPM shunt motor has the armature and field resistance of 0.5 Ω and 400 Ω respectively. It drives a DC load whose torque is constant at rated motor torque. Calculate motor speed if the source voltage drops to 175 volts.

OR

- a) Give details about control modeling of the three phase converter. Also draw its necessary diagram.
 - b) Explain in detail four Quadrant operation of a DC motor Drive.
- a) Explain the steady state analysis of Chopper controlled DC motor drive with necessary diagram.
 - b) A step up chopper is used to deliver load voltage of 500 V from 220 V DC source. If the blocking period of the thyristor is 80 µsec, compute the required pulse width.

OR

- 4. a) A 220 V, DC source is connected to a separately excited DC motor through a chopper operating at 500 Hz. The load at torque at 150 rpm is 35 μm. The motor torque has La = 2mH, R_A = 0Ω, R_f = 1Ω, K_m = 1.3V sec/rad. motor and chopper losses are neglected. Calculated,
 - minimum and maximum valve of armature current excursion.
 - ii) obtain expression for armature current during ON & OFF period of chopper cycle.
 - b) Explain the principle of operation of four quadrant chopper circuit.
- a) Compare Scherbius and Kramer drive system. Show that the Scherbius drive can operate in the sub - synchronous and super - synchronous range of operation.
 - Develop a flow chart for slip power recovery controlled induction motor drives steady state performance.

OR

AU - 3404 1 P.T.O

http://www.sgbauonline.com

6.	a)	Explain in detail with neat diagram torque speed characteristics with phase control Induction motor drives.	6
	b)	Explain why the drives based on slip energy recovery principle are more efficient than the drive based on the rotor resistance control technique.	7
		SECTION - B	
7.	a)	Describe the working principle of voltage source Inverter Driven Induction motor.	6
	b)	Discuss how the speed of a three - phase induction motor can be controlled by varying the frequency of the applied voltage.	7
		OR	
8.	a)	For a frequency controlled induction motor explain the terms in details, the constant slip - speed control and constant Air Gap Flux Control.	6
	b)	Explain the advantages of variable frequency induction motor drives.	7
9.	a)	In what way speed control for a.c. motors differ from that of d.c. motor? Also explain what do you mean by vector control. http://www.sgbauonline.com	7
	b)	Describe the detail working principal of Indirect vector control scheme and give necessary comments on its implementation.	7
		OR	
10.	a)	Explain with block diagram the direct vector control scheme.	7
	b)	Explain a current source indirect vector control scheme.	7
11.	a)	Explain in detail the design of current and speed controllers. Support your answer with any application.	7
	b)	Explain how the sensor less control of PMBDCM drive works.	6
		OR	
12.	a)	What do you mean by 'Phase Advancing"? Explain.	6
	b)	Discuss the merits & demerits of the PMBDCM drive with split supply converter.	7

http://www.sgbauonline.com