15523 : Computer Oriented Optimization Techniques: 3 MCA 5

P. Pages: 4

AU-3163
Time : Three Hours
$\operatorname{lnc}_{\star} \operatorname{lin}_{3} \operatorname{lin}_{\star}$

Notes: 1. All question carry equal marks.
2. Diagram and chemical equations should be given wherever necessary.

1. a) Give the classification of problems in O.R.
b) A NGO is devoted to improving health care in under developed countries. It has five medical teams available for the purpose. Presently it has selected three countries as target. The NGO needs to determine how many teams to allocate to each of three countries to maximize the total effectiveness of the five teams. The measure of effectiveness is additional man years of life. The following table gives the estimated additional man years life (in thousand) for each country for each possible allocation of medical teams. Find the optimum allocation of terms.

No. of medical teams	Country I	Country II	Country III
0	0	0	0
1	45	20	50
2	70	45	70
3	90	75	90
4	105	110	100
5	120	150	130

OR

2. a) What is dynamic programming problem. State its characteristics.
b) Find the shortest route in the network represented by following table figures shows the distance in kilometers.

	To City \rightarrow									
From City \downarrow	2	3	4	5	6	7	8	9	10	
1	4	6	3	-	-	-	-	-	-	
2	-	-	-	7	10	5	-	-	-	
3	-	-	-	3	8	4	-	-	-	
4	-	-	-	6	10	5	-	-	-	
5	-	-	-	-	-	-	4	8	-	
6	-	-	-	-	-	-	3	7	-	
7	-	-	-	-	-	-	8	4	-	
8	-	-	-	-	-	-	-	-	7	
9	-	-	-	-	-	-	-	-	9	

3. a) Define the terms ;
i) Slack variable
ii) Surplus variable
iii) Artificial variable
b) Solve the following ℓ.p.p. by two phase simplex method.
$\operatorname{Min} Z=x_{1}+x_{2}$
subject to $\quad 2 x_{1}+4 x_{2} \geq 4$
$x_{1}+7 x_{2} \geq 7$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

OR

4. a) Solve the following ℓ.p.p. by big-M method.
$\operatorname{Min} Z=5 x_{1}+3 x_{2}$
subject to $\quad 2 x_{1}+4 x_{2} \leq 12$
$2 \mathrm{x}_{1}+2 \mathrm{x}_{2}=10$
$5 x_{1}+2 x_{2} \geq 10$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
5. a) A firm has four retail outlets and four salesmen available. Each salesman can attend each outlet and the average sales generated by cach salesman at every outlet are tabulated
below (in thousand)

Salesman \downarrow		Outlet			
		R_{1}	R_{2}	R_{3}	R_{4}
	$\mathrm{~S}_{1}$	50	45	60	40
	$\mathrm{~S}_{2}$	38	42	50	42
	$\mathrm{~S}_{3}$	36	35	38	38
	$\mathrm{~S}_{4}$	24	25	30	28

i) Find the optimum assignment of salesman to outlets that maximize the total sales.
ii) Now, suppose the firm has fifth salesman S_{s} available to her and his performance at different outlets in terms of sales (in thousand) is as follows :

Outlet	R_{1}	R_{2}	R_{3}	R_{4}
Salesman: S_{5}	48	46	57	45

Should fifth salesman be hired ? If yes, who should be replaced ?
OR
6. Obtain the feasible solution to the following transportation problem by -
i) North - West corner rule
ii) Least cost method
iii) Vogel's approximation method.

	D_{1}	D_{2}	D_{3}	D_{4}	$\mathrm{~b}_{\mathrm{j}}$
O_{1}	5	8	4	1	40
O_{2}	3	5	6	2	60
O_{3}	2	2	5	7	50
a_{i}	35	55	30	30	

7. a) What is all integer programming problem ? Explain Gomory's cutting plane method to solve it.
b) Solve the following sequencing problem

Job	P	Q	R	S	T	U
Machine X	5	4	6	2	1	4
Machine Y	3	2	4	1	3	1

OR

8. a) A firm works 40 hours a week and has a capacity of overtime work to the extent of 20 hours in a week. It has received seven orders to be processed on three machines A, B and C in the order A, B, C to be delivered in a weeks time from now. The processing times are (in hours) are recorded below.

Job	1	2	3	4	5	6	7
Machine A	7	8	6	6	7	8	5
Machine B	2	2	1	3	3	2	4
Machine C	6	5	4	4	2	1	5

The manager insists on performing the jobs in the sequence in which they are received. He is refusing to accept eighth order, which requires 7,2 and 5 hours respectively on A, B and C machines, because according to him the eighth job would require a total of 61 hours for processing, which exceeds the firm's capacity what is your advice to him?
9. a) Two dice are thrown simultaneously. Write down the sample space and hence calculate the probability that (i) both the faces bear same number \& (ii) sum of the face numbers is 7 .
b) A decision maker has obtained following loss table.

	State of nature		
Act \downarrow	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
a_{1}	4	7	3
a_{2}	5	2	4
a_{3}	8	6	10
a_{4}	3	1	9

i) Find minimax decision.
ii) If $\mathrm{P}\left(\mathrm{S}_{1}\right)=0.5, \mathrm{P}\left(\mathrm{S}_{2}\right)=0.4 \& \mathrm{P}\left(\mathrm{S}_{3}\right)=0.1$, find Baye's decision using EOL criteria.

OR

10. a) In a bag there are 10 tiles numbered 1 to 10.4 tiles are selected at random from the bag and their numbers were noted. What is the probability that largest number is 6 .
b) Mr. Sam is planning a business tour from Mumbai to Hyderabad on $15^{\text {th }}$ of a month.
ii) If the probability of Rasta Roko done is 0.4. find expected loss associate to each option and hence optimum decision.
11. a) Solve the following game graphically.
$\left[\begin{array}{cc}2 & -5 \\ 4 & 2 \\ 1 & 1 \\ -2 & 2 \\ 0 & 3\end{array}\right]$
b) The following table lists the jobs of a network alongwith their time estimates.

Job	Duration (days)		
	Optimistic	Most likely	Pessimistic
$1-2$	3	6	15
$1-6$	2	5	14
$2-3$	6	12	30
$2-4$	2	5	8
$3-5$	5	11	17
$4-5$	3	6	15
$6-7$	3	9	27
$5-8$	1	4	7
$7-8$	4	19	28

i) Draw network
ii) Calculate expected duration, variance of the project and critical path.

OR

12. a) Explain the terms:
i) Maximin principle
ii) Minimax principle
iii) Saddle point
b) The activities and their time estimates of a project are listed below :

Activity	t_{0} (days)	t_{m} (days)	t_{p} (days)
$1-2$	7	9	17
$1-3$	10	20	60
$1-4$	5	10	15
$2-5$	50	65	110
$2-6$	30	40	50
$3-6$	50	55	90
$3-7$	1	5	9
$4-7$	40	48	68
$5-8$	5	10	15
$6-8$	20	27	52
$7-8$	30	40	50

Draw network and find ET, TE, TL, SE and critical path.

