7

B.Tech. Eighth Semester (Food, Pulp & Paper, Oil & Paint and Petro. Tech.) (CGS)

11081 : Chemical Reaction Engineering - II (Reactor Design) : 8 CT 02

P. Pages: 3

Time: Three Hours

AU - 3070

Max. Marks: 80

Notes:	1.	All question	carry	marks	as in	dict

- 2. Answer three question from section A and three question from section B.
- 3. Due credit will be given to neatness and adequate dimensions.
- 4. Assume suitable data wherever necessary.
- 5. Diagrams and Chemicals equations should be given wherever necessary.
- Illustrate your answer necessary with the help of neat sketches. 6.
- Discuss the reaction, mechanism wherever necessary. 7.
- Use pen Blue/Black ink/refill only for writing the answer book. 8.

SECTION - A

- Dispersed non coalescing droplets $(C_{AO} = 2 \text{ mol}/\ell)$ react as per the reaction $A \to R$ 7 with rate $-r_A = kC_A^2$, $k = 0.5 \ell/(\text{mol.min})$ as they pass through the contactor. Find the average concentration of A remaining in the droplets leaving the conductor. Use E = 0.5, for 1 < t < 3
 - Explain step input method for finding exit age distribution, E. b)

- http://www.sgbauonline.com Explain the tank in series model for RTD with pulse response experiment. 14
 - 9 Derive an expression for SCM for spherical particles of fixed size. Assume that, resistance a) of the ash layer controls the overall rate of reaction.
 - Explain the steps occur in succession during reaction, A (Fluid) + bB (solid) → fluid 4 b) product.

OR

- Particles of uniform size are 60% converted in a single fluidized bed as per the SCM with 8 4. a) reaction controlling. Find the conversion if the reactor is made twice as large but containing same amount of solids with same gas environment.
 - Give the diagrammatic representation of SCM of spherical particles of fixed size. 5 b)
- 5. Derive the rate expression for fluid-fluid heterogeneous reaction. Assume that reaction is a) fast and concentration of 'B' is high.
 - Explain the various tower and tank contactors used for gas liquid reaction. 7 b)

OR

Explain chemical and physical absorption with suitable example and derive the rate 13 6. equation for physical absorption.

SECTION - B

7

7

14

13

nttp://www.sgbauonline.com

- 7. Calculate the external surface area of non-porous spherical particles of 2 micron diameter. -a) What size particles would be necessary if the external surface is to be 100 m²/g? Density of particles is 2.0 g/cm3.
 - Explain the methods of catalyst preparation. b)

OR

8. The following data on an irreversible reaction $A \rightarrow R$ are obtained in a batch reactor (batch solids, batch fluid) using decaying catalyst. What can you say about the Kinetics?

C_{A}	1	0.802	0.675	0.532	0.422	0.368
t, h	0	0.25	0.5	1.0	02	œ

9. Gaseous A decomposes on a solid catalyst as per the following reaction:

 $A \rightarrow R$ with $-r_A = kC_A^2$

A pilot plant scale tubular reactor packed with 2 ℓ of catalyst is fed with 2 m³/h of pure A at 300°C and 20 atm. 65% of A is converted.

It is desired to treat 100 m³/h of feed gas at 40 atm and 300°C consisting of 60% A and 40% diluent in a larger plant to obtain 85% conversion of A. Find the internal volume of the reactor.

OR

10. Consider a single cylindrical pore of length 'L' with reactant 'A' diffusing into the pore and reacting on the surface by the first order reaction taking

A \rightarrow Product and $-r_A'' = -\frac{1}{S} \frac{dN_A}{dt} = k''C_A$ place at the walls of the pore and product

diffusing out of the pore.

Show that $C_A / C_{AS} = \frac{\cosh m(L - x)}{\cosh mL}$

11. Aqueous acetone is hydrogenated to propanol by the action of pure hydrogen at 1 atm in a 13 long column packed with porous catalyst (packed bubble column) and maintained at 14 °C. The reactants are fed at the bottom of the column. The reaction proceeds as follows:

$$H_2(g \rightarrow \ell) + CH_3COCH_3(\ell) \xrightarrow{on} CH_3CHOHCH_3(\ell)$$

A

 $H_3(g \rightarrow \ell) + CH_3COCH_3(\ell) \xrightarrow{on} CH_3CHOHCH_3(\ell)$

with rate

$$-r_{A}' = -r_{B}' = k'C_{A}^{2} C_{B}^{0}$$
, mol /(kg cat.s)

$$k' = 2.3 \times 10^{-3} \frac{m^3 \ell}{\text{kg cat. s}} \left(\frac{\text{mol}}{m^3 \ell}\right)^{1/2}$$

Find the fractional conversion of acetone to propanol.

Data:

Gas:
$$V_g = 4x10^{-2} \text{ m}^3 \text{g/s}$$
, $H_A = 36850 \text{ (Pa,m}^3 \ell)/\text{mol}$

Liquid:
$$V_{\ell} = 1 \times 10^{-4} \text{ m}^3 \text{i/s}, C_{B_{O}} = 1000 \text{ mol/m}^3.\ell$$

Reactor:
$$0.1 \text{ m}^2 \text{ cross} - \text{section } X 5 \text{ m high, } f_s = 0.60$$

Catalyst :
$$d_p = 5x10^{-3} \text{ m}$$
, $\rho_s = 4500 \text{ kg/m}^3$

$$D_e = 8x10^{-10} \text{ m}^3 \ell / (\text{m Cat.s})$$

Kinetics:
$$(k_{Ai} ai)_{g+L} = 0.021 \text{ m}^3 \ell / (\text{m}^3 \text{r.s})$$

$$K_{A_c} a_c = 0.051 \text{m}^3 \ell / (\text{m}^3 \text{r.s})$$

OR

7

6

nttp://www.sgbauonline.com

- 12. a) Explain the step involve in G/L reaction on a solid catalysts. Show Graphically the resistance involved in the gas-liquid reaction on solid catalysts.
 - b) Give the comparison between fixed bed and fluidized bed catalytic reactor.

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से