AU - 2714

Fifth Semester B. Tech. Che. Tech. (Food, P and P, O and P and Petro.) (CGS) Examination

CHEMICAL ENGINEERING THERMODYNAMICS

Paper - 5 CT 03 (USC - 11027)

P. Pages: 4

Time: Three Hours]

[Max. Marks: 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and Separate answer book must be used for Section A and B in Pharmacy and Cosmetic Tech.
 - (2) Answer Three questions from Section A and Three questions from Section B.
 - (3) Due credit will be given to neatness and adequate dimensions.
 - (4) Assume suitable data wherever necessary.
 - (5) Diagrams and Chemical equations should be given wherever necessary.
 - (6) Use of slide rule, logarithmic tables, Steam tables, Mollier's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.
 - (7) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

- 1. (a) What do you understand by Thermodynamics equilibrium?
- 4

nttp://www.sgbauonline.com

(b) State the Cyclic rule.

3

- (c) One mole of gas is allowed to expand isothermally and reversibly from a volume of 1 dm³ to 50 dm³ at 273 K. Calculate W, △E assuming ideal gas behaviour and non-ideal behaviour.
 - $[a = 6.5 \text{ atm. } dm^6/mol^2, b = 0.056 \text{ } dm^3/mol \text{ } R = 0.082 \text{ } dm^3/kmol]$

OR

- 2. (a) dz = y dx x dy
 - (i) Prove dz = non state function
 - (ii) Find two integrating factor

7

AU-2714

P.T.O.

- (b) State Van der Waal equation and derive the expression for work done. 6
- (a) State Heat Capacity at constant volume and pressure. Also derive the relation between C_p and C_v.
 - (b) Define:
 - (i) Coefficient of thermal expansion.
 - (ii) Coefficient of compressibility.

OR

4. Derive the following relation:

(i)
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$

(ii)
$$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

(iii)
$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

(iv)
$$\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$$

 (a) Show that Relative lowering of vapour pressure is equal to mole fraction of solute.

(b) Define partial molar quantity. Explain the methods for the evaluation of a partial molar quantity. nttp://www.sgbauonline.com

13

OR

 (a) 100 gm of each ethanol and methanol are mixed at 20°C to prepare an ideal mixture. The vapour pressure of methanol is 88.7 mm Hg and ethenol is 44.5 mm Hg at 20 °C.

Calculate:

(1) V.P. of solution.

AU-2714

2

•		(2) V. P of ethanol.	
		(3) V. P. of methanol.	6
	(b)	Prove that $\triangle Tb = \frac{R \ Tb^2}{\triangle H \ vap} \ x_2$	6
		State Henry's law.	2
		SECTION B	
7.	(a)	Explain phase diagram of:	
		Water ← Ice ← vapour	7
	(b)	What is phase rule? Explain the meaning of each component involve phase rule.	e in 6
		OR	
8.	(a)	Calculate f for:	
		aq. NaCl - KCl - NaBr - kBr system.	4
	(b)	Show graphically, tertiory system of water - phenol - Aniline.	5
	(c)	State and explain three component system.	4
9.	(a)	Derive Boltzman-Distribution Law.	9
	(b)	What is the relation between energy and partition function ?	4
		OR	
10.	(a)	10 molecules of a gas are present in a container maintained at 298 K. V is the probability that all ten molecules will be found simultaneously in half of the container?	
	(b)	Prove that Entropy and Thermodynamics property are interrelated.	8
11.	(a)	Write a condition for feasebility and graphical representation between energy and affinity.	free 8
AU-	-2714		T.O.

http://www.sgbauonline.com

(b) Derive equilibrium constant with respect to different form of chemical equation.

OR

12. (a) Prove that
$$\frac{dlnkp}{dT} = \frac{\triangle H^0}{RT^2}$$

(b) For the reaction $N_2O_4(g) \rightarrow 2NO_2(g)$ at 300 k and 1 atm kp = 0.157. Calculate k_c and k_x for this reaction under the given condition.

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

AU-2714

http://www.sgbauonline.com

4

180