AU - 2550

Third Semester B. Tech. (Chemical Engineering) Examination

STRENGTH OF MATERIALS

Paper - 3 CII 03 / 3 PP 03 / 3 CT 03

(USC - 10985)

P. Pages: 4

Time: Three Hours]

[Max. Marks: 80

attp://www.sgbauonline.com

- Note: (1) Separate answer book must be used for each section in the subject Geology. Engineering material of Civil branch and separate answer book must be used for Section A and B in pharmacy and Cosmetic Tech.
 - (2) Due credit will be given to neatness and adequate dimensions.
 - (3) Assume suitable data wherever necessary.
 - (4) Use pen of Blue/Black ink/refill only for writing the answer book

SECTION A

- (a) What is bulk modulus?
 Derive an expression for Young's modulus in terms of bulk modulus and Poisson's Ratio.
 - (b) A bar of uniform cross sectional area 600 mm² carries forces as shown in fig. no. 1. Calcualte total elongation of bar and stresses in each section. Take E=2x10⁵N/mm².

- (a) Distinguish between stress and strain. Draw and explain stress strain curve for a mild steel bar.
 - (b) A steel rod 120 mm in diameter and 1 m in length is held horizontally between two rigid supports. Calculate the force exerted by the rod on the

AU-2550 P.T.O.

8

4

rigid supports. If the temperature is increased by $35^{\,0}$ C.

Take $E_S = 2 \times 10^5 \text{ N/mm}^2$ and $\alpha_S = 12 \times 10^{-6} / {}^{0}\text{C}$.

Take
$$E_I = 175 \,\text{GN/mm}^2$$
 and $E_C = 75 \,\text{GN/m}^2$.

3. (a) Derive relationship between load intensity, shear force and bending moment.

(b) Draw SFD and BMD for the beam loaded as shown in fig. no. 2.

- 4. (a) Define section modulus and moment of resistance. What are the assumptions in theory of simple bending?
 - (b) A steel tube 3 m long having external and internal diameter of 80 mm and 50 mm respectively is supported at each end and carries a load of 'W' at a distance of 1.5 m from one end. Calculate the value of 'W' if the maximum bending stress is not exceed 120 N/mm².
- 5. (a) State the assumptions made in theory of pure torsion. 5
 - (b) A solid circular shaft transmits 75 kW power at 200 RPM. Calculate the shaft diameter, if the twist in the shaft is not to exceed 1⁰ in 2 meters length of the shaft and shear stress is limited to 50 N/mm².
 Take C=1x10⁵ N/mm².
 8

OR

- 6. (a) Draw the shape of shear stress distribution across the depth of the beams of the following cross sections:—
 - (1) Circular section
- (2) T Section.

6

AU-2550

http://www.sgbauonline.com

(b) A beam of rectangular section is simply supported over a span of 5 m and carries a Udl of 3 KN/m over the entire span. If the maximum shear stress is 7 N/mm^2 and $b = \frac{2}{3} \text{ d}$. Find the values of b and d. b = Width of beam and d = depth of beam.

SECTION B

- 7. (a) Derive the expression for circumferential and longitudinal stresses in a thin cylinder closed at both ends and subjected to internal fluid pressure. 5
 - (b) A thin cylinder whose ends are closed by means of rigid plates is made of steel plates 3 mm thick. The length and diameter of the cylinder 50 cm and 25 cm respectively. If it is subjected to an internal pressure of 3 N/mm², determine change in diameter, length and volume. Take E = 2 x 10 5 N/mm² and Poisson's ratio = 0.25.

OR

- 8. (a) Define slenderness ratio. State the limitations of Euler's formula. 5
 - (b) A solid round bar 60 mm in diameter and 2.5 m long is used as a column one end of column is fixed and other end is hinged. Taking factor of safety as 3. Calculate safe load using
 - (1) Euler's Formula $E = 2.1 \times 10^5 \text{ N/mm}^2$
 - (2) Rankine's Formula

$$f_c = 560 \text{ N/mm}^2 \text{ and } \alpha = \frac{1}{1600}$$

attp://www.sgbauonline.com

8

- (a) Prove that maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
 - (b) A weight of 1.2 kN is dropped on a collar attached at the lower end of a vertical bar 4 m long and 30 mm dia. Calculate the height of drop if maximum instantaneous stress is not to exceed 120 N/mm². Also calculate elongation. Take E=2.05 x 10⁵ N/mm².

OR

- 10. (a) Define the following terms':---
 - (1) Resilience

AU-2550 3 P.T.O.

- (2) Strain energy
- (3) Principal stress
- (4) Principal planes.

5

(b) At a certain point in a strained material the stress on two planes at right angles to each other are 20 N/mm² and 10 N/mm² both are tensile with shear stress 10 N/mm².

Calculate :---

(1) Principal stresses (2) Principal planes (3) Maximum shear stress.

8

11. (a) Prove the relation

$$M = EI \frac{d^2y}{dx^2}$$

M - Bending moment

E - Young's Modulus

I - Moment of inertia

6

nttp://www.sgbauonline.com

(b) Find out the values of deflection and slope for cantilever beam having point load at free end.
8

OR

12. Determine :-

AU-2550

- (1) The value of deflection at mid span
- (2) Maximum deflection
- (3) Slope at pt. A and B

For the beam loaded as shown in fig. If $E=1 \times 10^5$ N/mm² and $I=4.6 \times 10^6$ mm⁴.

