B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (OLD) UPTO WINTER-2018 (Graph Theory) (Optional)

		Pape	r—XII			
Time: T	hree	Hours]		[Maximum Marks: 60		
Note :		Question No. 1 is compulsory a Attempt ONE question from each	_	ot it at once.		
1. Cho	ose	the correct alternative :				
(i)	If a pair of vertices is associated with more than one edge then edges are called: 1					
	(a)	Self loop	(b)	Parallel edges		
	(c)	Incident edge	(d)	None of these		
(ii)	Αv	ertex of degree one is called:		1		
	(a)	isolated vertex	(b)	end vertex		
	(c)	terminal vertex	(d)	pendent vertex		
(iii)	i) A connected graph without any circuits is called:					
	(a)	cut set	(b)	complete graph		
	(c)	tree	(d)	None of these		
(iv)	Eve	ry connected graph has at least _	sp	anning tree.		
	(a)	1	(b)	2		
	(c)	3	(d)	4		
(v)		minimum number of vertices waining graph disconnected is called		loval from connected graph leaves the		
	(a)	edge connectivity	(b)	separability		
	(c)	vertex connectivity	(d)	None of these		
(vi)		ry cut-set in a non-separable east:	graph wi	th more than two vertices contains		
	(a)	one edge	(b)	two edges		
	(c)	three edges	(d)	None of these		
VOX-358	821		1	(Contd.)		

www.sgbauonline.com

	(vii)	The	dimension of the cut-set subspace W	's is	equal to the rank of the graph and the			
	number of cut-set vectors (including 0) in W_s is:							
		(a)	3 ^r	(b)	2 ^r			
		(c)	r	(d)	None of these			
	(viii) The dot product of two vectors, one corresponding a subgraph g and the other g' is if the number of edges common to g and g' is even.							
		(a)	one	(b)	two			
		(c)	three	(d)	zero			
	(ix)		A(G) is an incidence matrix of a connection $A(G)$ is:	ected	graph G with n vertices then the rank l			
		(a)	n	(b)	n-1			
		(c)	n-2	(d)	None of these			
	(x)) In a path matrix there is no row with all :						
		(a)	Zeros	(b)	Ones			
		(c)	Vertices	(d)	Edges			
			UNIT-	I				
2.	(a)		ine Graph. If a graph (connected or di		nected) has exactly two vertices of odd oining these two vertices.			
	(b)	_	•		ph if and only if it can be decomposed			
	(0)		circuits.	i gia.	pii ii and only ii it can oc decomposed			
3.	(p)		ine simple graph. Prove that a simple generated at most $(n - k) (n - k + 1)/2$ edges		n with n vertices and k components can			
	(q)	Defi	ine even and odd vertices and show	that	in a connected graph there are even			
		num	ther of odd degree vertices.		5			
			UNIT—I	I				
4.	(a)	Prov	ve that a graph G with n vertices, n -	1 e	dges and no circuits is connected. 5			
	(b)	Prov	ve that every connected graph has at I	east	one spanning tree. 5			
vox	358	21	^ *		(Contd.)			

- 5. (p) Define distance between two vertices in connected graph. Prove that the distance between two vertices in connected graph is a metric.
 - (q) Define tree. Prove that any connected graph with n vertices and n-1 edges is a tree.

UNIT-III

- (a) Prove that every circuit has an even number of edges in common with any cut-set.
 - (b) Prove that the complete graph of five vertices is non-planar. 5
- 7. (p) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.
 - (q) Prove that a connected planar graph with n vertices and edges has e n + 2 regions.

UNIT-IV

- (a) Prove that the set of circuit vectors corresponding to the set of fundamental circuit, with respect to any spanning tree, forms a basis for the circuit subspace W₁.
 - (b) Find W_{Γ} , W_{S} , $W_{\Gamma} \cap W_{S}$ and $W_{\Gamma} \cup W_{S}$ for the following graph.

- 9. (p) Prove that the circuit space W_{Γ} and the cutset subspace W_{s} are orthogonal to each other in the vector space of a graph.
 - (q) Find all circuits and cutsets of the graph G given below and calculate W_s and W_Γ and their dimensions.

VOX—35821 3 (Contd.)

UNIT-V

10. (a) Define incidence matrix. Find incidence matrix A(G) for the following graph. 1+4

- (b) Let Λ and B be respectively, the incidence matrix and the circuit matrix of a loop free graph whose columns are arranged using the same order of edges. Then show that every row of Λ is orthogonal to every row of B, i.e., $A \cdot B^T = 0$, $B \cdot A^T = 0 \pmod{2}$, where superscript T denotes the transposed matrix.
- 11. (p) If B is a circuit matrix of a connected graph G with e edges and n vertices then prove that rank of B = e = n + 1.
 - (q) Define fundamental circuit matrix and find fundamental circuit matrix (with respect to the spanning tree shown in heavy lines) of the following graph.

