(Contd.)

[Maximum Marks: 60

B.Sc. (Part—III) Semester—V Examination MATHEMATICS

Paper—X

(Modern Algebra)

Note: — Question ONE is compulsory and attempt it once and solve ONE question from each

10 1. Choose the correct alternative (1 mark each):— (1) If N is a normal subgroup of group G, then the factor group G/N is a group with respect to which of the following binary operation. (a) Na + Nb = Nab(b) $Na \cdot Nb = Nab$ (c) Na | Nb = Nab (d) Na - Nb = Nab(2) Group G is abelian group if for all a, b ∈ G : (a) $ab^{-1} = ab$ (b) $a^{-1}b = ab^{-1}$ (c) ab = ab(d) ab = ba (3) Let (G, +) be a group. Then mapping $\phi : G \to G$ is homomorphism if : (b) $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ (a) $\phi(a+b) = \phi(a) + \phi(b)$ (d) $\phi\left(\frac{a}{b}\right) = \phi(a)/\phi(b)$ (c) $\phi(a-b) = \phi(a) - \phi(b)$ (4) If $\phi: G \to G'$ is a homomorphism, then ker ϕ is a: (a) Subgroup of G' (b) Normal subgroup of G (d) Quotient subgroup of G (c) Proper subgroup of G' (5) Let G be a group, $a \in G$ be a fixed element and $f: G \to G$ be a mapping defined by $f(x) = axa^{-1}$. Which of the following is not true? (a) f is an isomorphism (b) f is not homomorphism (d) f is one to one (c) f is onto

1

VTM-13405

Time: Three Hours]

	(6)	6) If f be a homomorphism of group G onto G' with kernel K, then G' is:				
		(a)	isomorphic to G/K	(b)	isomorphic to K/G	
		(c)	isomorphic to G	(d)	isomorphic to G'/K	
	(7)	(7) If $f(x) = (-1, -2, -3)$ and $g(x) = (1, 3)$, then $f(x) \cdot g(x)$ is a polynomial				
		(a)	1	(b)	2	
		(c)	3	(d)	0	
	(8)	An	integral domain is :			
4		(a)	always a field	(b)	never a field	
		(c)	a field when it is finite	(d)	None of these	
	(9)	If $f(x) = (x-2)^3 (x-3)^2$, then 2 is the zero of polynomial $f(x)$ of multiplicity:				
		(a)	. 2	(b)	3	
		(c)	5	(d)	1	
	(10)	0) Which of the following polynomial is monic?				
		(a)	$(2x^2 + x + 1) \cdot (x^2 + 1)$	(b)	$(2x^2 + x + 1) \cdot (\frac{1}{2}x^2 - x - 1)$	
		(c)	$(2x^2 + x + 1) \cdot (-x - 1)$	(d)	$(2x^2 + x + 1) \cdot (x^2 - 1)$	
				UNITI		
2.	(a)	Prove that subgroup H of group G is normal iff $H_a \cdot H_b = H_{ab}$; $\forall a, b \in G$.				4
	(b)	Show that if G is abelian group, then the quotient group G/N is also abelian group. Is it converse true, explain?				
	(c)	Let 'S _n ' be a symmetric group of permutations of degree 'n' and 'A _n ' be the set of all ever permutation in 'S _n '. Then show that A _n is normal subgroup of 'S _n '.				
3.	(d)	If $G = \{1, -1, i, -i\}$ and $N = \{1, -1\}$, then show that N is normal subgroup of multiplicative group G. Find quotient group G/N and also order of G/N.				
	(e)	If H is subgroup of group G and N is normal subgroup of G, then show that $H \cap N$ is normal subgroup of H.				rma 3
	(f)	Show that every subgroup of an abelian group is normal.				3
VTN	1134	05		2	(Co	ntd.)

UNIT-II

- (a) Let φ: G → G' is an isomorphism. Then show that the order of an element a ∈ G is equal to the order of its image φ (a) ∈ G'.
 - (b) If φ : G → G' is homorphism with Kernel K, then prove that K is normal subgroup of group G.
 - (c) Let G be any group and g be fixed element in G. Define $\phi : G \to G$ such that $\phi(x) = gxg^{-1}$, then prove that ϕ is an isomorphism of G onto G.
- 5. (d) If φ : G → G' is a homomorphism with Kernel Kφ, then prove that φ is an isomorphism iff
 Kφ = {e}; where 'e' is an identity element of G.
 - (e) Let N be a normal subgroup of group G. Define a mapping $\phi: G \to G/N$ such that $\phi(x) = Nx$ for all $x \in G$. Then prove that ϕ is homomorphism of G onto G/N and $Ker \phi = N$.
 - (f) Let R be additive group of real numbers and R⁺ be the multiplicative group of all positive real numbers. Then prove that the mapping f : R → R⁺ defined by f(x) = e^x; ∀_X ∈ R is an isomorphism.
 3

UNIT-III

- 6. (a) Define commutative ring. If R is a ring with zero element '0', then for all a, b, c ∈ R, prove that:
 - (i) $a \cdot 0 = 0 \cdot a = 0$
 - (ii) $a \cdot (-b) = (-a) \cdot b = -(ab)$
 - (iii) $\mathbf{a} \cdot (\mathbf{b} \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} \mathbf{a} \cdot \mathbf{c}$.
 - (b) Show that a ring is without zero divisor iff the cancellation laws holds in R. 5
- 7. (c) Show that the set 'S' of 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$; is a subring of ring of
 - 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with respect to the operation addition and multiplication of the matrices; where a, b, c, d are the integers.
 - (d) Define Boolean ring. Prove that every Boolean ring is commutative.

VTM-13405 3 (Contd.)

UNIT-IV

- 8. (a) Prove that a nonempty subset K of a field F is a subfield of F iff
 - (i) $a b \in K$
 - (ii) $a \cdot b^{-1} \in K$

for all a, b $(\neq 0) \in K$.

5

- (b) Prove that the characteristic of an integral domain is either zero or a prime number.
- 9. (c) Prove that every finite integral domain is a field.

5

(d) Prove that the characteristic of an integral domain is zero or n > 0 according as the order of any non-zero element regarded as member of the additive group of the integral domain is either infinity or n.

UNIT--V

10. (a) Prove that R is an integral domain iff R[x] is an integral domain.

4

4

- (b) If p / q is a rational zero of polynomial $f(x) = a_0 + a_1 x + ... + a_n x^n$ and p and q have no common factor, then prove that p is a factor of a_0 and q is a factor of a_n .
- (c) Prove that the polynomial $f(x) = x^4 + 2x + 2$ is irreducible over the field of rational numbers.
- 11. (d) Let F be a field and p(x), q(x) be two non zero polynomials of F[x]. Then prove that $deg(p(x) \cdot q(x)) = deg(p(x) + deg(q(x))$.
 - (e) If p is a prime number, then prove that the polynomial $x^n p$, is irreducible over the rationals.
 - (f) If f(x) is a polynomial over a field F and $\alpha \in F$, then show that the remainder in the division of f(x) by $(x \alpha)$ is $f(\alpha)$.

VTM-13405

4

825