B.E. Sixth Semester (Electrical & Electronics Engg.) (CGS)

10389 : Digital Signal Processing : 6 EX 01

P. Pages: 2

http://www.sgbauonline.com

Time: Three Hours

AU - 2761

7

6

6

8

Max. Marks: 80

Notes:

- Answer three question from Section A and three question from Section B.
- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

a) A discrete time signal x(n) is defined as.

 $x(n) = \begin{cases} 1 + \frac{n}{2} & -3 \le n \le -1 \\ 1 & 0 \le n \le 3 \\ 0 & Elsewhere \end{cases}$

- 1) Det^m & sketch signal x(n)
- Fold x(n) and delay resulting signal by three samples.
- 3) Delay x(n) and fold resulting signal by three samples
- b) Check the following systems for linearity, Causality, time invariance
 - i) $v(n) = e^{x(n)}$

ii)
$$y(n) = x(n) + 2x(n-1)$$

OR

2. a) Compute convolution y(n) = x(n) * h(n)

$$x(n) = \{1, 1, 0, 1\} & h(n) = \{1, -2, -3, 4\}$$

b) Find the natural response of the system describe by difference equation

$$y(n) + 2y(n-1) + y(n-2) = x(n) + x(n-1)$$
Initial
$$Cond^{n}$$

$$y(-1) = y(-2) = 1$$

- 3. a) Compute the discrete time Fourier transform (DTFT) of following signals.
 - i) $x(n) = a^n u(n)$
 - ii) $x(n) = \begin{cases} 1 : & 0 < n < 6 \\ 0 : & \text{otherwise} \end{cases}$
 - b) Derive the radix 2 decimation in time algorithm and draw butterfly diagram for N = 8.

OR

4. Find the DFT of the following sequence $x(n) = \{1, -1, -1, -1, 1, 1, 1-1\}$ Using DIFFFT 14 algorithm & sketch the necessary flow graph.

P.T.O

- 5. a) An analog signal x(t) is 6
 x(t) = 4cos 100 πt + 2cos 200 πt
 Find: i) Nyquist sampling rate
 ii) If x(t) is sampled at a rate f_s = 5000 Hz. What is the discrete signal obtained after sampling.
 - b) Explain quantization process in ADC.

OR

7

6

http://www.sgbauonline.com

7

6

7

- 6. a) Explain the oversampling Sigma Delta A/D Convertor with help of neat block diagram.
 - b) Explain in detail sampling of bandpass signals.

SECTION -- B

- 7. a) Consider a system defined by difference equation $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{3}x(n-1)$ realize the system in cascade form.
 - b) A certain LTI filter has following data
 i) Poles are at 0.2 & 0.6 ii) Zeroes are at -0.4 & Origine
 - iii) Gain factor K = 4 Determine Direct (1) & (II) form.

OR

8. Design Ideal LPF with frequency response

 $H_{d}(e^{jw}) = 1 \quad -\frac{\pi}{2} \le \omega \le \frac{\pi}{2}$ $= 0 \quad \frac{\pi}{2} \le \omega \le \pi$

for N = 11 using rectangular window.

- 9. a) Derive the formula for Bilinear transformation, so as to convert analog filter to digital filter.
 - b) If $H_a(s) = \frac{s+0.1}{(s+0.1)^2 + 25}$ design digital filer for T = 1sec by using impulse invariant method.

OR

- 10. a) Design a Butterworth low pass filter with bilinear transformation for the following specification-
 - i) Pass band gain = 1db
 ii) Passband frequency cutoff at 0.3π rad/sec
 - iii) Stop band gain = 15db iv) Stop band frequency cutoff at 0.6π rad/sec it T = 1sec.
 - Explain in detail warping effect with neat diagram and its elimination method.
- 11. a) What are the different source of interrupts in DSP processor. Hence explain interrupt vectors and interrupt latency.
 - b) Compare Microprocessor and DSP processor.
- 12. a) How does direct memory access (DMA) helps to increase processing speed of DSP processor.
 - b) Explain in detail super scalar processing.
