B.E. Sixth Semester (Electro. & Power, Elect. & Power, Electrical Engg.) (CGS)

10564 : Computer Aided Machine Design : 6 EP 04 / 6 EL 04 / 6 EE 04

P. Pages: 2 Time: Three Hours

http://www.sgbauonline.com

AU - 2757

7

6

7

5

8

8

5

6

Max. Marks: 80

Notes	. 1	
NOTES	•	

- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary. 2.
- 3. Diagrams and equations should be given wherever necessary.
- 4. Retain the construction lines.
- Illustrate your answer necessary with the help of neat sketches. 5.
- Use of slide rule logarithmic tables, Drawing instrument and non programmable calculator is permitted.
- Use of pen Blue/Black ink/refill only for writing the answer book. 7.

SECTION - A

- 1. Draw the flow charts of analysis method and synthesis method of design. Also compare a) them.
 - Explain in detail the construction of a 3-phase transformer. b)

- Explain the classification of insulating materials on the basis of their maximum a) permissible temperature.
 - b) Differentiate between distribution transformer and power transformer.
- 3. Explain in detail specific electric and magnetic loadings of a transformer. a)
 - b) Calculate the core and window area of a 400 kVA, 50 Hz, single phase, core type power transformer. The following data may be assumed. Ratio of weight of iron to weight of copper = 4;

Ratio of length of mean turn of copper to length of mean flux path = 0.5; maximum current density = 1.5 Wb/m²; Current density = 2.2 A/mm²; density of copper = $8.9 \times 10^3 \text{kg/m}^3$,

density of iron = 7.8×10^3 kg/m³; copper space factor = 0.12.

OR

- Calculate and draw the main dimensions details of a 100 kVA, 2 kv/400V, 50 Hz, single 4. a) phase shell type, oil immersed, self cooled transformer. Assume :
 - Voltage per turn = 10V, Max. flux density in core = 1.1 Wb/m^2 ;

Current density = 2 A/mm^2 ; Window space factor = 0.33;

The ratio of window height to window width = 3

stray load loss = 10% of full load copper loss; iron loss per kg for 1.5 Wb/m² = 1.23 W. Assume an extra loss for joints = 20% of total iron loss.

- Explain the design of core of transformer stepped type. b)
- Derive the equation for calculation of leakage reactance of core type transformer referred 5. a) 8 to primary side for concentric, cylindrical coils.
 - Explain that the leakage reactance of core type transformer is reduced to nearly to one b) fourth by subdivision and interlacing of windings.

OR

P.T.O 1 AU - 2757

http://www.sgbauonline.com

6.	a)	A single phase, 400V, 50 Hz, transformer is built from stampings having a relative permeability of 1000. The length of the flux path is 2.5 m, the area of cross section of the core is 2.5×10^{-3} m ² and the primary winding has 800 turns. Estimate the maximum flux and no load current of the transformer, the iron loss at the working flux density is 2.6 W/kg. Iron weights = 7.8×10^3 kg/ m ³ . Stacking factor is 0.9.	
	b)	Explain different cooling methods of transformer.	6
		SECTION - B	
7.	a)	Explain in detail the factors that affects the choice of specific electric and magnetic loadings of induction motors.	6
	b)	Determine the main dimensions, number of turns per phase, and number of stator slots of a 3.7 kw, 400 volts, 3 phase, 4 pole, 50 Hz squirrel cage induction motor to be started by a star/Delta starter. Assume: Average flux density in the gap = 0.45 Wb/m², Ampere conductors per meter = 23000, efficiency = 0.85, and power factor = 0.84. Choose the main dimensions for cheap design (Ratio of axial length to pole pitch = 1.5). Winding factor = 0.955, Stacking factor = 0.9.	7
		OR	
8.	a)	With reference to design of stator of induction motor, explain: i) Factors affecting selection of number of slots, ii) Size and shape of stator slots, iii) Minimum width of stator tooth.	6
	b)	Find the main dimensions of a 15 kw, 3 phase, 400 V, 50 Hz, 2810 r.p.m. squirrel cage induction motor having an efficiency of 0.88 and a full load power factor of 0.9. Assume: Specific magnetic loading = 0.5 Wb/m², Specific electric loading = 25000 A/m. Take the rotor peripheral speed as 20 m/s at synchronous speed.	7
9.	a)	Explain in detail the design of rotor bars and slots.	7
	b)	Obtain an expression for the end ring current in squirrel cage rotor. Also explain why current density in end ring can be chosen to be greater than that of bar.	7
		OR	
10.	a)	Explain cogging and crawling in an induction motor. How to avoid these cogging and crawling?	7
	b)	Explain in detail design of wound rotor.	7
11.	a)	Explain dispersion coefficient and its effect on maximum power factor and overload capacity.	7
	b)	Derive the formula for squirrel cage rotor resistance per phase referred to stator side. OR	6
12.	a)	Explain the calculation of magnetizing current of an induction motor.	7
	b)	Explain the effect of - i) Change in number of poles, and ii) Change in frequency on the performance of induction motor.	6