AU - 2536

Third Semester B. E. (Computer Science and Enggineering) Examination

ELECTRONICS DEVICES AND CIRCUITS

Paper - 3 KS 03 (USC - 10305)

P. Pages: 3

Time: Three Hours |

[Max. Marks: 80

Note	:	(1)	Due credit v	vill be	given to	neatness a	nd adequate	dimensions
1000	•	` '	Due create	· 111 00	ZIVCII I	, iiçaiiicəə a	na aacquate	OHIO CHOICHS

- (2) Assume suitable data wherever necessary.
 - (3) Diagrams and Chemical equations should be given wherever necessary.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.
 - (5) Use pen of Blue/Black ink/refill only for writing the answer book.
- (a) A 15-0-15 volts (rms) ideal transformer is used with full wave rectifier circuit with diodes having forward drop of 1Volt. The load is a resistance of 100 Ω, and capacitor of 10,000 µf is used as a filter. Calculate the dc load current and voltage.
 - (b) What is need of filter circuit? Explain any one filter in detail.

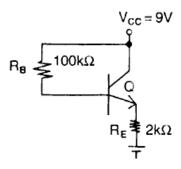
OR

- (a) Explain full wave bridge rectifier along with circuit diagram and waveforms.
 Also determine the efficiency of it.
 - (b) Explain the following terms with reference to zener diode.
 - (i) Zener voltage
 - (ii) Power dissipation
 - (iii) Zener test current (IzT)

6

attp://www.sgbauonline.com

- (a) Obtain the expression for collector current (I_C) of a transistor in common emitter configuration.
 - (b) Define α and β of a transistor. For a transistor the base current is 100 μ A and collector current is 2.9 mA. Find α and β .


AU-2536 P.T.O.

OR

- 4. (a) Calculate the collector current and emitter current of a transistor with $\alpha = 0.95$ and $I_{CEO} = 100 \, \mu A$ when the base current is 10 μA .
 - (b) Derive the relationship between I_{CBO} and I_{CEO} .
- 5. (a) What is need of biasing in transistor? Explain fixed bias circuit and find its stability factor.
 - (b) Why is the termal stabilization more essential for CE configuration of a transistor than for CB configuration?

OR

- 6. (a) Why stability of an operating point necessary for transistor circuit? List different sources of instability of Q -point.
 - (b) For the circuit shown in fig. Find:
 - (i) I_B (ii) I_E (iii) V_{CE} (iv) V_E and
 - (v) V_B for $\beta = 49$ and $V_{BE} = 0.7V$

- (a) Draw the static characteristics of JFET and explain the followings :-
 - (i) Ohmic region
 - (ii) Pinch-off Region
 - (iii) Breakdown region.

7

7

nttp://www.sgbauonline.com

AU-2536

7.

	(b)	For	the	FET	prove	that
--	-----	-----	-----	-----	-------	------

 $\mu = rd \times gm$

where μ , rd and gm are the FET parameters.

7

OR

- 8. (a) Give the comparison between
 - (i) JFET and BJT (ii) JFET and MOSFET

7

- (b) With the help of neat diagrams explain the operation and drain characteristics of n-channel depletion type MOSFET. Explain the mechanism of "Pinch-off" condition.
- 9. (a) Explain crystal oscillator in detail. State its merits and demerits.
 - (b) Explain wein-bridge oscillator in detail.

6

OR

- 10. (a) A Rc phase shift oscillator has $R = 10 \text{ k}\Omega$ and $C = 0.001 \mu\text{F}$
 - (i) Find frequency of oscillation
 - (ii) If oscillations are made to be variable using same value of R what will be its range for tunning of 1 KHz to 100 KHz?
 - (b) Explain Barkhausens criteria in detail.

6

- 11. (a) What is LASER? Explain construction, working principle of it. How LASER is differ from LED?
 - (b) Explain photovoltaic effect in detail. Explain the construction and operation of photovoltaic cell.

OR

- (a) Give the comparison between photoemissive sensor, photovoltaic sensor and photo conductive sensor.
 - (b) What is phototransistor? How it is differ from conventional BJT? Explain construction, working principle of phototransistor in detail.

AU-2536

http://www.sgbauonline.com

3

180