AM-223

B.C.A. Part-I (Semester-I) Examination NUMERICAL METHODS - 1ST4

Time : Three Hours]

[Maximum Marks : 60
Note : (1) ALL questions are compulsory.
(2) All questions carry equal marks.

1. (a) What do you mean by Numerical Computing? Explain how you will formulate mathematical model in numerical computing.
(b) Describe with the help of block diagram, the process of numerical computing. 4
(c) Explain new trends in Numerical Computing. 4

OR

2. (a) What is Accuracy? How is it affected during the process of numerical computing? 4
(b) Describe the various phases involved in numerical computing process. 4
(c) Explain Digital computing. 4
3. (a) Explain the taxonomy of error in numerical computing. 4
(b) Explain how you will approximate a number using rounding off rule.
UZR-46747
(c) Round off the following numbers to four significant figures :
(i) .0063945
(ii) 0.90038
(iii) 12.345
(iv) 0.16153 .

OR

4. (a) How do mathematical models contribute to error in numerical computing?
(b) Explain the concept of truncation error with example.
(c) Use zero to second order Taylor's series expansion to approximate the function :

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=-0.1 \mathrm{x}^{4}-0.15 \mathrm{x}^{3}-0.5 \mathrm{x}^{2}-0.25 \mathrm{x}+1.2 . \\
& \text { 5. (a) Explain how you will locate by using bisection method. }
\end{aligned}
$$

(b) Use the false position repeatedly and obtain the root of the equation $\bar{x} \tan x-1=0$.

OR

6. (a) What do you mean by algebraic equation and transcendental equation? Give two examples. 4
(b) Find the root of an equation $\mathrm{e}^{-\mathrm{x}}-\mathrm{x}=0$ by using bisection method.
7. (a) State the Newton Raphson formula and explain how it is used to obtain real root of equation.
(b) Find by Newton Raphson method, the root of the equation $\log x-\cos x=0$.
(c) By using secant method find the root of the equation $f(x)=x \sin x-1$.4

OR

8. (a) State the formula to obtain real root of the equation by using secant method. Compare the secant iterative formula with Newton Raphson formula to estimate root of the equation.
(b) Use the secant method to find the root of an equation $x^{2}-4 x-10=0$
(c) Explain the method of successive approximation to find a root of an equation $f(x)=0$.4
9. (a) Describe the two basic phases that are employed for solving a system of linear equations.
(b) Solve the following system of equations by using Gauss Jordan method:

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+4 x_{3}=8 \\
& x_{1}+x_{2}+4 x_{3}=15 \\
& 3 x_{1}+4 x_{2}-x_{3}=8
\end{aligned}
$$

OR

10. (a) Solve the following system of equations by using Gauss elimination with partial pivoting:

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}=1 \\
& 3 x_{1}+x_{2}-3 x_{3}=5 \\
& x_{1}-2 x_{2}-5 x_{3}=10 \tag{8}
\end{align*}
$$

(b) What are the pitfalls that occur in Gauss elimination method?

UZR- 46747
3

