B.Arch. Third Semester (Architectural Engineering) (CGS)
 10023 : Architectural Structure - II 03 AR 05

P. Pages: 2

AV - 2659
Time : Three Hours

Notes: 1. All question carry equal marks.
2. Due credit will be given to neatness and adequate dimensions.
3. Assume suitable data wherever necessary.
4. Illustrate your answer necessary with the help of neat sketches.
5. Use of pen Blue/Black ink/refill only for writing the answer book.

1. a) A vertical bar 4 m long and of $2000 \mathrm{~mm}^{2}$ cross sectional area is fixed at upper end \& has a collar at the lower end. Determine the maximum stress induced when a weight of 3000 N falls through a height of 25 cm on the collar and 30000 N falls through a height of 2.5 cm on the collar Take $\mathrm{E}=200$ Gpa.
b) A Mild steel plate is 400 mm Long, 200 mm wide \& 50 mm thick is subjected to gradually applied load of 1200 kN . Calculate
i) Proof Resilience
ii) Modulus of Resilience
iii) Elongation

Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

OR

2. a) Prove that stress occurred due to suddenly Applied Load is twice that of stress occurred due to gradually Applied load.
b) Determine Instantaneous stress and deformation of a rod of 1 m Length \& 6 mm diameter if the mass of 50 kg falls through a height of $10 \mathrm{~cm} \&$ strikes the bottom of the rod. Assume $\mathrm{E}=210 \mathrm{GPa}$.
3. a) A timber beam is required to span 4 m carrying total uniform Load of 40 kN . The safe allowable bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$. Choose a suitable depth for the beam section if width is to be 120 mm .
b) State the assumptions made in theory of simple bending.

4
OR
4. A T-Shaped cross-section of beam as shown in fig. 4 is subjected to a vertical load of 100 kN . Calculate the shear stress at important points and draw shear stress distribution diagram.

M.I. @ the horizontal Neutral axis is $113.4 \times 10^{6} \mathrm{~mm}^{4}$.
http://www.sgbauonline.com/
5. A hallow Cl column whose outside diameter is 200 mm has a thickness of 20 mm . It is 4.5 m Long \& is fixed at both ends. Calculate safe 1 rad by Rankine's formula using FOS of 4. Calculate the slenderness ratio and the ratio of Euler's and Rankine's critical Load Take $\sigma_{\mathrm{c}}=550 \mathrm{~N} / \mathrm{mm}^{2} \alpha=11000$ in Rankine's formula and $\mathrm{E}=9.4 \times 10^{4} \mathrm{~N} \mathrm{~mm}^{2}$.

OR

6. Determine the Crippling load for a T-Section of diamensions $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 2 \mathrm{~cm}$ and of length 5 m when it is used as a strut with both or its ends hinged.
Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
7. a) Explain.
a) Liquid Limit.
b) Plastic Limit.
b) Define.
a) Void Ratio.
b) Porosity.
c) Degree of saturation.
d) Bulk density.

OR

8. a) Differentiate between compaction and consolidation.
b) Explair soil properties and characteristics relevant to the design of foundation.
9. A masonry pier of $3500 \mathrm{~mm} \times 4200 \mathrm{~mm}$ supports a vertical load of 120 kN as shown in fig. 9. Find stresses developed at each comer of the pier.

OR
10. Determine the maximum and minimum stresses at the base of hallow circular chimney of height 22 m with external diameter 5 m and internal diameter 3 m . The chimney is subjected to a horizontal wind preisure of intensity $1.2 \mathrm{kN} / \mathrm{m}^{2}$. the specific weight of the material of the chimney is $25 \mathrm{kN} / \mathrm{m}^{2}$

