B.Arch. Third Semester (Architectural Engineering) (CGS)

10023: Architectural Structure – II 03 AR 05

P. Pages: 2

Time: Three Hours

AV - 2659

10

6

4

Max. Marks: 80

Notes: 1. All question carry equal marks.

- 2. Due credit will be given to neatness and adequate dimensions.
- 3. Assume suitable data wherever necessary.
- 4. Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.
- 1. A vertical bar 4m long and of 2000mm² cross sectional area is fixed at upper end & has a collar at the lower end. Determine the maximum stress induced when a weight of 3000N falls through a height of 25cm on the collar and 30000N falls through a height of 2.5cm on the collar Take E = 200 Gpa.
 - A Mild steel plate is 400mm Long, 200mm wide & 50mm thick is subjected to gradually b) applied load of 1200kN. Calculate
 - Proof Resilience
- ii) Modulus of Resilience
- iii) Elongation

Take $E = 2 \times 10^5 \,\text{N} / \text{mm}^2$.

OR

- Prove that stress occurred due to suddenly Applied Load is twice that of stress occurred 2. a) due to gradually Applied load.
 - 6
 - Determine Instantaneous stress and deformation of a rod of Im Length & 6mm diameter if 10 b) the mass of 50 kg falls through a height of 10cm & strikes the bottom of the rod. Assume E = 210 GPa.
- 12 A timber beam is required to span 4m carrying total uniform Load of 40kN. The safe 3. a) allowable bending stress is 8N / mm². Choose a suitable depth for the beam section if width is to be 120mm.
 - b) State the assumptions made in theory of simple bending.

OR

16 A T-Shaped cross-section of beam as shown in fig. 4 is subjected to a vertical load of 100kN. 4. Calculate the shear stress at important points and draw shear stress distribution diagram.

M.I. @ the horizontal Neutral axis is $113.4 \times 10^6 \text{ mm}^4$.

P.T.O

5. A hallow CI column whose outside diameter is 200mm has a thickness of 20mm. It is 4.5m 16 Long & is fixed at both ends. Calculate safe Load by Rankine's formula using FOS of 4. Calculate the slenderness ratio and the ratio of Euler's and Rankine's critical Load. Take $\sigma_c = 550 \text{N}/\text{mm}^2 \alpha = 1/1000 \text{ in Rankine's formula and } E = 9.4 \times 10^4 \text{N}/\text{mm}^2$.

6. Determine the Crippling load for a T-Section of diamensions 10cm x 10cm x 2cm and of 16 length 5m when it is used as a strut with both of its ends hinged.

Take $E = 2 \times 10^5 \,\text{N} \,/\,\text{mm}^2$.

- 7. Explain. a)
 - a) Liquid Limit.
 - Plastic Limit.
 - Define. b)

c)

- Void Ratio. a)
- - Degree of saturation.
- b) Porosity.
- Bulk density. d)

8

8

8

8

16

 \mathbf{OR}

- 8. Differentiate between compaction and consolidation. a)
 - Explain soil properties and characteristics relevant to the design of foundation. b)
- 9. A masonry pier of 3500mm x 4200mm supports a vertical load of 120kN as shown in fig. 9. Find stresses developed at each corner of the pier.

Figure 9

OR

10. Determine the maximum and minimum stresses at the base of hallow circular chimney of 16 height 22m with external diameter 5m and internal diameter 3m. The chimney is subjected to a horizontal wind pressure of intensity 1.2kN/m², the specific weight of the material of the chimney is 25kN/m².